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It is well-known [i, 2] that the study of hydrodynamic processes in the boundary layer 
approximation can be reduced to the solution of an equation describing the shape of the 
free surface of a nonlinearly-viscous fluid using the methods of similarity theory and 
dimensional analysis. However, the boundary value problems arising in connection with the 
mathematical modelling are essentially nonlinear and their solution, in the general case, 
can only be found by numerical methods. The absence of a priori estimates of the accuracy 
of the numerical methods makes it necessary to construct analytical solutions of these pro- 
blems at least in particular self-similar cases for testing appropriate difference schemes 
on them. 

In [3], using the notion of group analysis [4, 5], a group classification was made 
of the equation describing the shape of the free surface of a nonlinearly-viscous fluid 
in a one-dimensional approximation and, in particular, the shape of a glacier. The invar- 
iant solutions obtained were used to construct self-similar problems illustrating qualita- 
tive features of the flow of the fluid with a rheological power law. 

In the present paper we solve a two-dimensional self-similar problem concerned[ with 
the spread of a fluid over a bed of complex configuration. 

i. The Basic Equation. Considering the nonstationary flow of a nonlinearly-viscous 
fluid in an isothermal approximation, we can show [2] that the function s y, t) describ- 
ing the free surface satisfies a second-order nonlinear partial differential equation, 
namely, 

.)Io i o, :-ri E 
where t is the time; x and y are spatial coordinates; s y) is the profile of the surface 
over which spreading of the fluid takes place; F(z) = kz ~ is a function characterizing rheo- 
logical properties of the fluid with a power-law dependence. 

From Eq. (I), with appropriate boundary conditions on ~(x, y, t), we can determine 
all the other characteristics of the flow; in particular, the velocity in an arbitrary 
direction, the stress arising in the fluid, and so forth. 

2. Invaria~rt Solutions. Construction of a full spectrum of invariant solutions of 
a specific differential equation is based on its group properties [4, 5]. Therefore, with 
the aim of obtaining invariant solutions of Eq. (I) we carried out a group classification 
for it. Detailed results of the group analysis are given in [3]. Here we give invariant 
solutions needed in the sequel only of the second rank (Table i). 

3. Solution of the Problem of Three-dimensional Spreading of the Fluid- Among the 
invariant solutions, a most general and nontrivial solution is <~X 4 + Xs>, which depends 
on the arbitrary parameters ~ and ~. As can be seen from Table i, this solution can be 
found in the form 13 = ~(Ii, 12) or 

co+ 1--~L 

u = t ' ~ (2~+~  I~) , I~ = ~ ,  I o - -  Y (2) 
- t l / k  
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(u = ~ - s is the thickness of the layer of nonlinearly-viscous fluid; ~ is the sought- 
for function, depending on invariants 11 and 12). 

With the aid of the invariant solution (2) we obtain an exact solution of the problem 
of the three-dimensional spreading of the fluid, concentrated initially at the coordinate 
origin 0(0, 0), over the channel s = (x2/y 2 + C)/Y 2 (C = const). In Eq. (2) we take I = 
5a + 3 and append to the right side of Eq. (i) the function 

F = t 5~+~ /0(I~,12) (3) 

[ f 0 ( I 1 ,  12) i s  an a r b i t r a r y  f u n c t i o n ] .  

To complete the  system of  equa t ions  we w r i t e  the  i n i t i a l  and boundary c o n d i t i o n s  

t = O: ~ ( t )  ~ O; ( 4 )  

2 

r-+O: I = l  o + t  ~+aO(t,~);  (5) 

(1 - - / 0 ) I r  = 0; ( 6 )  

Qlr = Qo = O, (7) 

where r---- ~ / x 2 +  g2; ~0----arctg (x/y); alP(t, ~ ) i s  an a r b i t r a r y  ass igned  f u n c t i o n ;  O i s  the  f l u i d  
mass f low; ~ l ( t )  i s  the  reg ion  of  computa t ion;  r i s  the  r eg ion  boundary.  S u b s t i t u t i n g  Eqs. 
(2) and (3) into Eq. (I), we obtain a differential equation for determination of the func- 
tion ~(11, 12) with one less independent variable: 

/ v + + s, oi, • (s) 

[( I ~ 21,~ (0~ fl c%p 
x -s '  s, o,, 

xV(z, 

2 (C+ 2I~) 

,: )]1 + 

s~ • 

12 OI t I~ )]  * ~ l  = - -  IffO" 

Thus, in solving problems concerned with spreading of a fluid it is necessary to spec- 
ify the computational domain boundary F and the two boundary conditions (6) and (7). How- 
ever, by virtue of the fact that Eq. (8) is nonlinear and boundary F is not known, we adopt 
a different approach for solving problem (i), (3)-(7). We specify in invariant variables 
the computational domain ~2 = ~ + FI + F2 (Fig. i), where ~ is the interior part of the 
semi-circle 112 + 122 = Rf; Fl, r 2 are boundaries of the domain. Then, having the compu- 
tational domain, it is sufficient to indicate only one condition on F 2. In the 11 and 12 
variables this condition, and also the condition (5) at zero, assume the form 

~]r 1 =  ~)0 (I1)~; ~IF9 = O. (9) 

Proceeding, we find the solution of problem (8), (9). According to this solution, we re- 
cover the form of the solution for problem (i), (3)-(7) in the domain ~l = ~ 4- r + 0(0, 0) 
(Fig. 2), in which ~2 appears, and we determine the mass flow of the fluid on boundary r 
in the following way: 

qx= ~ -- , \ax] +\-~y]j  J,/ 

q~ = -~y t Ox.i + ( oy : tr 

(qx is the mass flow of the fluid in the direction of the OX axis; qy is the mass flow of 

the fluid in the direction of the OY axis). This is one of the possible ways of solving 
the model problem (I), (3)-(7). 
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TABLE 2 

~o 

0 
O,i 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
i,O 

r 00 

@ (r, (~) 

t,2732 
i,0957 
0,7744 
0,5227 
0,359i 
0,2554 
0,i885 
0,1439 
0,ii31 
0,09t5 
0,0000 

i,2732 
i,0953 
0,7744 
0,521t 
0,3576 
0,2544 
0,t879 
0,1436 
0,ii28 
0,09i0 
0,o000 

t,2732 
i,0951 
0,7744 
0,5t95 
0,3564 
0,2538 
0,i877 
0,t435 
0,t128 
0,0910 
0,0000 

1,2732 
1,095i 
0,772i 

0,5t92 
0,3563 
0,2539 
0,t878 
0,1437 
0,1t31 
0,0924 
0,0000 

t,2732 
t,0953 
0,7735 
0,5202 
0,3569 
0,2543 
0,i88i 
0,t438 
0,i132 
0,0954 
0,0000 

t,2732 
t,0955 
0,7744 
0,5209 
0,3573 
0,2545 
0,1882 
0,t438 
0,tt32 
0,0972 
0,0000 
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4. Difference Scheme and Numerical Solution. Because Eq. (8) is nonlinear we solve 
problem (8), (9) numerically using the method given in [6]. A difference scheme of second- 
order accuracy was constructed based on an integrating identity. To do this numerically 
we applied a two-step iterational process with a Laplace difference operator on the upper 
layer. Inversion of the Laplace operator was effect by the method of variable directions. 

In solving problem (8), (9) we used, as initial data for function ~, the interior of 
domain ~ and on boundary F l we used an analog of the Dirac delta-function in the form 

~(r ,  9)  = ~ / ~ ( ~ r 2  "4 - t ) ,  g = 4 ,  V r  = 2 . 5 .  

After 200 iterations we obtained the solution shown in Table 2. The relative error amounted 
to 0.03%. 

The general form of the two-dimensional spreading of the fluid over the channel Z0 = 
(x2/y 2 + 0.1)/y 2, as well as a profile of the surface at 75 ~ , 90 ~ , and 105 ~ , is shown in 
Figs. 3-5. Moreover, in calculating the mass flow of the fluid on boundary F according to 
the solution obtained, it turned out that the flow is equal to zero to within five-figure 
accuracy, which testified to our good choice of the computational domain ~2 for the problem 
(i), (3)-(7) posed here. 

The form of the surface of the fluid and the coordinates at an arbitary moment of time 
may be determined from Eqs. (2): 

x = grcos  9, r E  [0, 1], 9 ~  [0, ~], (10)  
1 2 

g =  t 5~+3rsing, l = l  0 + t  ~a+3~(r,~) 

( r ,  ~ ,  ~ a r e  shown in  T a b l e  2 ) .  From t h e  fo rm o f  s o l u t i o n  (10)  and F i g s .  4 and 5 we s e e  
t h a t  o v e r  t i m e  t h e  edge  o f  t h e  n o n l i n e a r l y - v i s c o u s  f l u i d  a d v a n c e s  f o r w a r d  and t h e  t h i c k n e s s  
d e c r e a s e s ,  i . e . ,  a s p a t i a l  s p r e a d i n g  i s  o b s e r v e d .  

The self-similar solution obtained expresses qualitative regularities of the flow and 
can serve as a basis for developing numerical methods for solving problems involving sub- 
stantial three-dimensional spreading of a nonlinearly-viscous fluid. 

LITERATURE CITED 

I. S. S. Grigoryan and P. A. Shumskii, ,A simple mathematical model of a three-dimensional 
nonstationary glacier," Scientific Works, Inst. of Mechanics, Moscow State Univ., No. 
42, Moscow (1975). 

2. A. N. Salamatin, Analysis of the Simplest Mathematical Models of Dome-Shaped Glaciers 
[in Russian], Studies in Applied Mathematics, No. 7, Kazan Univ., Kazan (1979).~ 

3. F. Kh. Akhmedova and V. A. Chugunov, "Group properties and invariant solutions of an 
equation describing the two-dimensional flow of glaciers," Zh. Prikl. Mekh. Tekh. Fiz., 
No. 1 (1987). 

4. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Mos- 
cow (1978). 

5. N. Kh. Ibragimov, Groups of Transformations in Mathematical Physics [in Russian], 
Nauka, Moscow (1983). 

6. M. M. Karchevskii and A. D. Lyashko, Difference Schemes for Nonlinear Problems in Math- 
ematical Physics, Chap. i, Quasilinear Elliptic Equations [in Russian], Kazan Univ., 
Kazan (1976). 

815 


